1. Monomios y las operaciones de adición, sustracción, multiplicación y división.

Suma de monomios

Sólo podemos sumar monomios semejantes.

La suma de dos monomios es otro monomio que tiene la misma parte literal y cuyo coeficiente es la suma de los coeficientes.

axn + bxn = (a + b)bxn

2x2y3z + 3x2y3z = 5x2y3z

Si los monomios no son semejantes se obtiene un polinomio.

2x2 y+ 3x2 yz

Producto de un número por un monomio

El producto de un número por un monomio es otro monomio semejante cuyo coeficiente es el producto del coeficiente de monomio por el número.

5 · 2x2 yz = 10x2 yz

Multiplicación de monomios

La multiplicación de monomios es otro monomio que tiene por coeficiente el producto de los coeficientes y cuya parte literal se obtiene multiplicando las potencias que tenga la misma base, es decir, sumando los exponentes.

axn · bxm = (a · b)bxn +m

5x2 yz · 2 y2 z2 = 10 x2 yz3

División de monomios

Sólo se pueden dividir monomios con la misma parte literal y con el grado del dividendo mayor o igual que el grado de la variable correspondiente del divisor.

La división de monomios es otro monomio que tiene por coeficiente el cociente de los coeficientes y cuya parte literal se obtiene dividiendo las potencias que tenga la misma base, es decir, restando los exponentes.

axn : bxm = (a : b)bxn − m


Si el grado del divisor es mayor, obtenemos una fracción algebraica.