LA TERMOQUÍMICA EN PROCESOS ENERGÉTICOS SUSTENTABLES Y LA ELECTROQUÍMICA EN LA PRODUCCIÓN TECNOLÓGICA SOCIOCOMUNITARIA
4. Segunda ley de la termodinámica y el ciclo de Carnot en máquinas térmicas
Máquinas térmicas y la segunda ley de la termodinámica La segunda ley de la termodinámica establece cuáles procesos pueden ocurrir y cuáles no en la naturaleza. Los siguientes son ejemplos de procesos que son consistentes con la primera ley de la termodinámica pero que proceden de un orden gobernado por la segunda ley: Cuando dos objetos a diferente temperatura se ponen en contacto térmico entre sí, la energía térmica siempre fluye del objeto más caliente al más frío, nunca del más frío al más caliente. Una bola de hule que se deja caer al suelo rebota varias veces y finalmente queda en reposo, pero una bola que se encuentra en el suelo nunca empieza a botar por sí sola. Debido a los choques con las moléculas de aire y la fricción, un péndulo oscilante finalmente se detiene en el punto de suspensión. La energía mecánica se convierte en energía térmica; la transformación inversa de energía nunca ocurre.
Representación esquemática de una máquina térmica. La máquina absorbe energía térmica Qc de un depósito caliente, libera la energía térmica Qf al depósito frío y efectúa un trabajo W. Una máquina térmica lleva a cierta sustancia de trabajo a través de un proceso de un ciclo durante el cual
1) la energía térmica se absorbe de una fuente a alta temperatura,
2) la máquina realiza trabajo, y
3) la máquina expulsa energía térmica a una fuente de menor temperatura. Depósito frío a Tf Motor Deposito caliente a Tc Qc Qf W
A partir de la primera ley de la termodinámica vemos que el trabajo neto W hecho por la máquina térmica es igual al calor neto que fluye hacia ella. Como podemos ver de la figura, Qneto = Qc - Qf; por lo tanto W = Qc - Qf El trabajo neto hecho por un proceso cíclico es el área encerrada por la curva que representa el proceso en el diagrama PV. Diagrama PV para un proceso cíclico arbitrario. El trabajo neto realizado es igual al área encerrada por la curva.
La eficiencia térmica, e, de una máquina térmica se define como el cociente del trabajo neto realizado a la energía térmica absorbida a una temperatura más alta durante el ciclo: Esta fórmula muestra que una máquina tiene un 100% de eficiencia sólo sí Qf = 0. Es decir, no se entrega energía térmica al reservorio frío.
La forma de Kelvin-Planck de la segunda ley de la termodinámica establece lo siguiente: Es imposible construir una máquina térmica que, operando en un ciclo, no produzca otro efecto que la absorción de energía térmica de un depósito y la realización de una cantidad igual de trabajo. Depósito frío a Tf Motor Deposito caliente a Tc Qc W
Ejemplo Calcule la eficiencia de una máquina térmica que absorbe 2000 J de energía de un depósito caliente y entrega 1500 J a un depósito frío.